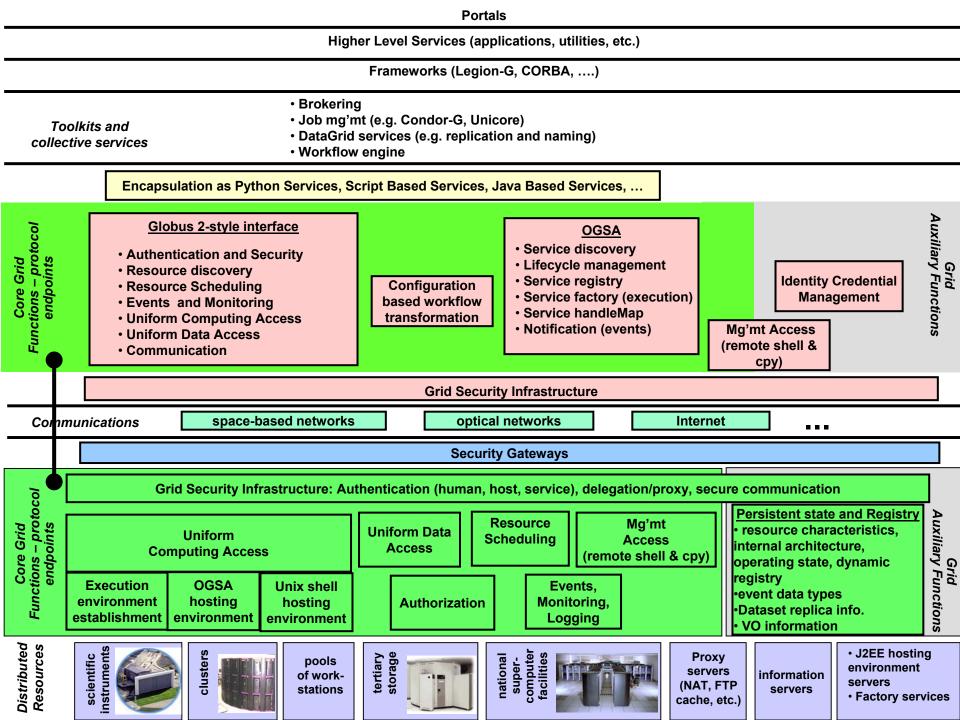
Core Grid Functions: A Minimal Architecture for Grids

William E. Johnston

Lawrence Berkeley National Lab and NASA Ames Research Center (www-itg.lbl.gov/~wej)

Work of the GGF Grid Protocol Architecture WG W. Johnston, J. Brooke, white paper co-authors


Goal:

- A minimal set of Grid functions that provide uniform interfaces and management for architecturally, geographically, and administratively heterogeneous computing, data, and instrument systems
- that are managed as production Grids
- "Production Grids" are the Grids that are trying to provide services to a diverse user community to whom the operators of the Grid are responsible for providing a reliable and useful service
- Note: Interoperability also requires operational agreements

- This minimal set of functions are the smallest set of services that are needed to build all other Grid frameworks, middleware, and applications
 - the minimal services may vary somewhat depending on the type of Grid resource – computing, data, instrument, etc.

- Defining a "minimal" set of functions is important because:
 - They provide a metric related to whether a system is a Grid enabled system, or not
 - without the Core Grid Functions, there will be Grid middleware, frameworks, and applications that cannot function
 - represent the fundamental persistent infrastructure of the Grid
 - represent most of the operational effort in building and managing Grids

- Criteria for a Core Grid Function
 - cannot be built on top of other Grid services
 - is essential for building other Grid services and applications, or for providing scalability or security
 - must be self contained (except possibly with respect to security)

- Resource Discovery and State / Grid Persistent State
- Resource Scheduling
- Uniform Computing Access
- Uniform Data Access
- Asynchronous Information Sources (Events, Monitoring, Logging, etc.)
- Remote Authentication, Authorization, Delegation, and Secure Communication
- System Management and Access
- Architectural Constraints (e.g. security)
- Bindings

Resource Discovery & State / Grid Persistent State

- A Grid information service must provide information about existence and characteristics of all Grid resources
- Should minimize the number of persistent information servers needed to enable Grid services and applications

Functionality

- Provide for locating all Grid resources with specified properties, within a certain scoping
- Provide state information as pointers
- Accommodate a dynamic resource base
- Be extensible to "all" Grid persistent state
 all Grid services can be sources of information, and if this
 information needs to be referenced and/or discovered, it should be
 possible to store and/or represent it in the Grid information service.
 E.g.
 - Data from users, Virtual Organizations, applications
 - Computing resources
 - Available software
 - Current user allocation
 - Asynchronous Information Sources registry and data content

Resource Discovery / Grid Persistent State

A minimal service

- Discovery is an essential Grid function. Without discovery, you cannot build virtual systems from dynamically changing pools of resources.
- Management of persistent servers is operationally expensive, therefore it is critical to minimize the number of servers needed for a persistent Grid
 - Storing / representing all manner of persistent Grid information with one service is important to minimize required operational support

Resource Scheduling

Scheduling coordinates distinct resources so that they may operate cooperatively

Functionality

- Establish a given virtual system relationship among an administratively independent set of Grid resources via coscheduling
- Return information sufficient for negotiation of a common QoS (e.g. time slot) among independent resources
- A scheduler operating on the resource must
 - Provide time of day reservation
 - Evaluate the future availability of a reservation request and pass that information back to the requester
 - Support soft reservations to allow time for an external broker to negotiate a common reservation among several resources

A minimal service

- Essential for QoS
- Not possible to emulate

Uniform Computing Access

- Job / process initiation
- Functionality
 - Initiate a process or task script on a remote Grid system
 - Support queries about queue types
 - Support submission to named queues (different classes of service)
 - Perform access control based on Grid identity
 - Adapt to variations in system architecture

Uniform Computing Access

- Execution environment establishment
 - Hosting (provide for certain Grid styles of I/O, IPC, etc.)
 - OGSA
 - Unix shell
 - Establish the application runtime environment
 - Configuration based workflow transformation

Uniform Data Access

- Today the primary Grid data access is to named, unstructured objects ("flat" files)
 - objects / files whose structure is understood only by the application that reads the files, and not by the storage system
 - Hence, the primary current model for Grid data access is FTP
- Other emerging functionality in Grid storage resources:
 - Support for some mechanism of sub-setting or filtering data before it leaves the storage resource
 - providing access to relational databases
 - providing access to object oriented databases (?)
- Flat File / Unstructured Object Access Functionality
 - Storage access abstraction
 - Partial file access
 - Integrated Grid security infrastructure security and access control based on the Grid identity

Asynchronous Information Sources (Events, Monitoring, Logging, etc.)

 "Asynchronous Information Sources" = any source of XML formatted objects that can publish its existence and object content characteristics, and then support subscription based delivery of those objects

Functionality

- Source registration (a la GMA, the source registers its existence and the content of the objects that it will generate)
- Registry should be "globally" searchable based on various source and/or object content characteristics
- Receiving data is by subscription and by direct transfer (source to sink) – the GMA model

A minimal service

- Generally, users cannot start persistent servers
- May be required on systems where jobs cannot be initiated (e.g. storage and instrument control systems)

Remote Authentication, Authorization, Delegation, and Secure Communication

- Identity Certification Authority and certificate management
 - Provides a mechanism for users / entities to request certificates
 - Provides a registration process that verifies user/entity identity
 - Issues and signs X.509 identity certificates
 - Provides Certificate Revocation List generation, management, access, and use
 - Provides a certificate repository
 - Has a formal policy

Remote Authentication, Authorization, Delegation, and Secure Communication

Authentication

- Authenticate user access based on Grid identity cert
- Provide for using host identity credentials at both ends of a transport connection for
 - validating the system identities
 - Securely conveying user entity credentials/proxy to the remote system

Authorization

Access control based on Grid identity and attributes

Secure Communication

Encrypted streams and messages

Delegation

- The process by which a user's identity (perhaps with restrictions) is carried to a remote system without the user being directly involved at the remote system
- These are all essential components for secure, authenticated, and authorized access to remote systems

System Management and Access

 Remote system management, and sometimes remote user access, are needed so that Grid resources may be managed and interactively accessed within the Grid context

Functionality

- Remote login, authenticated and secured with Grid security functions and authorization based on Grid identity
- Remote shell, authenticated and secured with Grid security functions and authorization based on Grid identity
- Remote copy, authenticated and secured with Grid security functions and authorization based on Grid identity
- This seems to be an essential service, because if it is not provided then it is always accomplished in a adhoc manner

Architectural Constraints

- In order to be called a Grid Service, it should not be possible to convey command and control messages to remote Grid systems except through the secure and authenticated communication provided by the Grid security functions
- Secure data channels should always be optional, as encryption may be impractical in the cases of high data rates or volumes

Bindings

- Most of the Core Functions will be defined in terms of protocols and data structures, and this provides the basic uniformity required of Grids
- However, there will be many ways to use these Core Functions. For example
 - Globus toolkit's C language
 - CoG kit's Java interface to the Globus functions
 - PyGlobus interface to the Globus functions
- Arguably the OGSI work represents a non- "Globus" interface to the Core functions
- And there will be others

This talk is at grid.lbl.gov/~wej/Grids